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Abstract. An acyclic coloring of a graph G is a coloring of the vertices of G, where no two

adjacent vertices of G receive the same color and no cycle of G contains vertices of only two

colors. An acyclic k-coloring of a graph G is an acyclic coloring of G using k colors. In this paper

we show the necessary and sufficient condition of acyclic coloring of a complete k-partite graph.

Then we derive the minimum number of colors for acyclic coloring of such graphs. We also show

that any complete k-partite graph G having n1, n2, ...., nk vertices in its P1, P2, ...., Pk partition

respectively is acyclically (2k−1)-colorable using
∑

i 6=j,i,j≤k

ninj +nmax+(k−1)−

k−1∑

i=0

(k− i)ni+1

division vertices, where nmax = max(n1, n2, ..., nk). Finally we show that there is an infinite

number of cubic planar graphs which are acyclically 3-colorable.
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1 Introduction

An acyclic coloring of a graph G is a coloring

of G with no bichromatic cycle. An acyclic k-

coloring of a graph G is an acyclic coloring of

G using k colors. Acylic colorings of graphs

find applications in diverse areas [9,10,11].

For example, an acyclic coloring of a planar

graph has been used to obtain upper bounds

on the volume of a 3-dimensional staright-

line grid drawing of a planar graph [9]. Con-

sequently, an acyclic coloring of a planar

graph subdivision can give upper bounds on

the volume of a 3-dimensional polyline grid

drawing, where the number of division ver-

tices gives an upper bound on the number of

bends sufficient to achieve that volume. The

acyclic chromatic number of a graph helps to

obtain an upper bound on the size of “feed-

back vertex set” of a graph, which has wide

applications in opareting system, database

system, genome assembly, and VLSI chip de-
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sign [10]. Acyclic colorings are also used in

efficient computation of Hessian matrix [11].

The concept of acyclic coloring of a graph

was introduced by Grunbaum [12] and is fur-

ther studied in the last two decades in sev-

eral works [2,1,7,5,6,3] among others. Grun-

baum proved an upper bound of nine for

the acyclic chromatic number of any pla-

nar graph G, with n ≥ 6 vertices. Then

Mitchem [16], Albertsorn and Berman [1],

Kostochka [15] and finally Borodin [7] im-

proved this upper bound to eight, seven, six

and five respectively. Concerning the compu-

tational complexity of the corresponding de-

cision problem, Kostochka [14] proved that

deciding whether a planar graph admits an

acyclic 3-coloring is NP-hard and Ochem [18]

proved that the same holds for bipartite pla-

nar graphs of maximum degree 4. Bipartite

graph is a k-partite graph with k = 2. Many

practical problems such as networking, tex-

tile engineering [13] is directly related to k-

partite graphs. While coloring complete k-

partite graphs we have found an interesting

property that although their chromatic num-

ber is always equal to k but their acyclic

chromatic number is greater than or equal to

k. We thus try to find a minimum bound for

acyclic chromatic number of such graphs. In

this paper we find out the minimum acyclic

chromatic number of any complete k-partite

graphs.

A k-subdivision of a graph G is a graph

G′ obtained by replacing every edge of G

with a path that has at most k internal

vertices. We call these internal vertices the

division vertices of G. Wood [21] observed

that every graph has a 2-subdivision that is

acyclically 3-colorable. Angelini and Frati [4]

proved that every triangulated planar graph

with n vertices has a 1-subdivision with

3n − 6 division vertices that is acyclically

3-colorable. This upper bound on the num-

ber of division vertices reduces to 2n − 6

in the case of acyclic 4-coloring [17]. In this

paper we show that any complete k-partite

graph G having n1, n2, ..., nk vertices in its

P1, P2, ..., Pk partition respectively is acycli-

cally (2k − 1)-colorable using
∑

i 6=j,i,j≤k

ninj

+nmax + (k − 1)−
k−1∑

i=0

(k − i)ni+1 division

vertices, where nmax = max(n1, n2, ..., nk).

Acyclic 3-coloring of a cubic planar

graph is also an interesting open problem.

In this paper we show that there are infi-

nite number of cubic planar graphs which

are acyclically 3-colorable.

In this paper we examine acyclic col-

orings of k-partite graphs and acyclic 3-
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colorability of cubic planar graphs. Our re-

sults are as follows.

– In Section 3 we show the necessary and

sufficient condition for acyclic coloring of

any complete k-partite graphs. We also

derive the minimum number of colors for

acyclic coloring of such graphs.

– In Section 4 we reduce the number of col-

ors using subdivision.

– In Section 5 we show that there are infi-

nite number of planar cubic graphs which

are acyclically 3-colorable. Note that al-

though every cubic graph admits acyclic

4-coloring [19], every cubic graph does

not always admit acyclic 3-coloring [4].

2 Preliminaries

In this section we present some defini-

tions and preliminary results that are used

throughout the paper.

A graphG is a tuple (V,E) which consists

of a finite set V of vertices and a finite set E

of edges; each edge is an unordered pair of

vertices. We often denote the set of vertices

of G by V (G) and the set of edges by E(G).

A graph is planar if it can be embedded in

the plane so that no two edges intersect ge-

ometrically except at a vertex to which they

are both incident.

If the vertex set V of a graph G can be

partitioned into k disjoint sets V1,V2,...,Vk in

such a way that any edge of G joins a vertex

of Vx to a vertex of Vy where x 6= y, then G

is called k-partite graph. If every vertex of a

partition is joined to every vertex of all other

partion then G is called a complete k-partite

graph.

Subdividing an edge (u, v) of a

graph G is the operation of deleting

the edge (u, v) and adding a path u(=

w0), w1, w2, ..., wk, v(= wk+1) through new

vertices w1, w2, ..., wk, k ≥ 1, of degree two.

A graph G′ is said to be a subdivision of a

graph G if G′ is obtained from G by subdi-

viding some of the edges of G. A vertex v of

G′ is called an original vertex if v is a vertex

of G; otherwise, v is called a division vertex.

A cubic graph G is a graph such that ev-

ery vertex of G has degree 3. If a cubic graph

G is planar then G is a cubic planar graph.

3 Acyclic Coloring of Complete

k-Partite Graphs

In this section we prove the necessary and

sufficient condition of acyclic coloring of a

complete k-partite graph. We also derive

the minimum number of colors needed for

acyclic coloring of such graphs.
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Theorem 1. Let G be a complete k-partite

graph, then any proper coloring of G is an

acyclic coloring if and only if there is at most

one partition having two vertices of same

color.

Proof. Necessity: Assume for a contradiction

that there are more than one partition of

G having two vertices of same color. Let Vx

and Vy be such two partitions. Let c1 and c2

be the repeated colors in partitions Vx and

Vy, respectively. Then G contains a bichro-

matic cycle of colors c1 and c2, since G is a

complete k-partite graph. This is a contra-

diction, since the coloring of G is acyclic.

Sufficiency: If there is no partition P

having two vertices of same color then the

proper coloring of G is also an acyclic color-

ing. We thus asume that there is a partition

P having two vertices of same color. Then

any cycle C that does not go through P has

at least three vertices of different color. If

a cycle goes through a vertex v in P , then

the two neighbors u and w of v on C and v

have different colors. Thus the coloring of G

is acyclic. ⊓⊔

Theorem 1 immediately yields the follow-

ing corollary.

Corollary 1. Let G be a complete k-partite

graph. Then the acyclic chromatic number of

G is equal to |V (G)| − x+ 1, where x is the

size of the maximum partition.

Proof. According to Theorem 1, vertices of

at most one partition can have same color.

Thus to color G acyclically with the min-

imum number of colors, all vertices of the

maximum partition of G must be colored

with same color. Otherwise the acyclic col-

oring would not be minimum. All other ver-

tices of G must be colored with different col-

ors. So the acyclic chromatic number of G is

equal to |V (G)| − x + 1 where x is the size

of the maximum partition. ⊓⊔

4 Acyclic Coloring with

Subdivision

As we mentioned in Section 1 acyclic color-

ing of graph subdivisions has huge applica-

tions in theory and practice. In such appli-

cations it is desirable to use smaller num-

ber of division vertices. In Section 3 we pro-

vided some properties about acyclic color-

ing of complete k-partite graphs. In this sec-

tion we deal with acyclic coloring of sub-

divisions of complete k-partite graphs. One

can easily get an acyclic coloring of a com-

plete k-partite graph using (2k − 1) colors,

by adding one division vertex on each edge

of the graph. This naive approch will add
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Fig. 1. Structure of graph G′.

∑

i 6=j,i,j≤k

ninj division vertices. We can reduce

this number of division vertices by a careful

observation as in the following theorem.

Theorem 2. Let G be a complete k-partite

graph having n1, n2, ...., nk vertices in its

P1, P2, ...., Pk partition, respectively. Then

G has a subdivision G′ which is acycli-

cally (2k − 1)-colorable using
∑

i 6=j,i,j≤k

ninj

+nmax + (k − 1)−
k−1∑

i=0

(k − i)ni+1 division

vertices, where nmax = max(n1, n2, ..., nk).

Proof. We denote by Gl, 1 ≤ l ≤ k, the sub-

graph of G induced by P1∪P2∪....∪Pl. Then

Gk = G. We can assume n1 ≥ n2 ≥ ... ≥ nk;

otherwise we can reorder the partition in this

way.

We prove the claim by induction on l.

When l = 1, we can use 2l− 1 = 2.1− 1 = 1
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Fig. 2. Vertices u and v belongs to two different partitions.

(c)(a) (b)

Fig. 3. Recursive construction of infinite graphs which are not acyclically 3-colorable.

color and
∑

i 6=j,i,j≤l

ninj +nmax + (l − 1)−

k−1∑

i=0

(l− i)ni+1 =
∑

i 6=j,i,j≤1

ninj +n1+(1−1)−

1−1∑

i=0

(1− i)ni+1 = 0+n1+0−n1 = 0 division

vertices to get an acyclic coloring of P1. Since

there exists no edge between two vertices of

same partition, we can color all vertices of

P1 with the first color. Hence the above con-

dition satisfies, P1 is acyclically 1-colorable

using no division vertices.

We thus assume that l > 1 and that

the claim is true for graphs G1, G2, G3, ..., Gl

where 1 ≤ l ≤ k − 1. We now have to show

that the claim is also true for Gk.

We first obtain Gk−1 by deleting Pk from

Gk. By induction hypothesis, Gk−1 has an

subdivision G′
k−1

which is acyclically 2(k −

1)−1 = (2k−3) colorable, where the number

of division vertices is equal to
∑

i 6=j,i,j≤k−1

ninj

+nmax + (k − 2)−

k−2∑

i=0

(k − 1 − i)ni+1. We

now obtain a graph G∗ by adding the deleted

edges from all vertices in Pk to all origi-

nal vertices in G′
k−1

. Let x be an arbitary

vertex of Pk in G∗. Now for each vertex

y ∈ Pk − x, we subdivide d(y) − 1 edges
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      (c)
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      (b)
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Fig. 4. Recursive construction of acyclically 3-colorable graphs.

incidient to y by replacing each edge with

path containing one division vertex. Note

that we do not subdivide exactly one edge

incident to y. We now color the newly di-

vision vertices with (2k − 2)th color and we

color all vertices of Pk with (2k − 1)th color.

Let G′ be the resulting graph as illustrated

in Fig. 1. Clearly, G′ is a subdivision of Gk

which is colored with (2k−1) colors. Now to

complete the proof it remains to show that

G′ is acyclically colored using
∑

i 6=j,i,j≤k

ninj

+nmax + (k − 1)−
k−1∑

i=0

(k − i)ni+1 division

vertices.

We first prove that G′ is acyclically col-

ored. Any cycle that does not go through

Pk contains vertices of at least three colors

according to induction hypothesis. If a cy-

cle goes through Pk−x then it also contains

vertices of at least three colors since it must

contain one division vertex, as illustrated in

Fig. 1. Let us consider a cycle C that goes

through x. If two neighbours u and v of x

on C belong to two different partitions then

C contains vertices of at least three colors,

as illustrated in Fig. 2. If u and v belong to

same partition P , then C must have a vertex

w where w /∈ (P ∪x). If w ∈ (Pk−x) then C

contains vertices of at least three colors, as

we mentioned above. If w /∈ (P ∪Pk) then C

must traverse at least three partitions. Hence

C must have at least three colors. Thus C is

always acyclic. Hence G′ is acyclically col-

ored too.

The number of edges incident to Pk is

equal to nk(n1+n2+ ...+nk−1). Number of

edges incident to Pk − x and not subdivided

is equal to (nk − 1). Number of edges inci-

dent to x is equal to (n1 + n2 + ... + nk−1).

So number of subdivision vertices which was
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not present in G′
k−1

, but present in G′ is

equal to nk(n1+n2+ ...+nk−1)− (nk−1)−

(n1+n2+...+nk−1). So total number of sub-

division vertices in G′ is equal to number of

subdivision vertices in G′
k−1

+ nk(n1 + n2 +

...+nk−1)−(nk−1)−(n1+n2+ ...+nk−1) =
∑

i 6=j,i,j≤k

ninj +nmax+(k−1)−
k−1∑

i=0

(k−i)ni+1.

So G has a subdivision G′ which is acycli-

cally (2k − 1)-colorable using
∑

i 6=j,i,j≤k

ninj

+nmax + (k − 1)−
k−1∑

i=0

(k − i)ni+1 division

vertices. ⊓⊔

5 Acyclic Coloring of Cubic

Planar Graphs

A graph G is cubic if every vertex of G has

degree exactly three. Cubic graphs arises in

different kind of real world problems. Cubic

graphs have been deeply investigated in the

literature due to their appliacation in topol-

ogy, 1-dimensional CW complex and polyhe-

dra. According to Brooks’s theorem [8] every

cubic graph other than the complete graph

K4 can be colored with at most three colors.

According to Vizing’s theorem [20] every cu-

bic graph needs either three or four colors for

an edge coloring.

Acyclic coloring of cubic graphs have

many interesting properties. Grunbaum

proved that any cubic graph admits an

acyclic 4-coloring. So it became an inter-

esting problem whehter they also admits

acyclic 3-coloring. Recently Frati [4] showed

that there exists an infinite number of cu-

bic planar graphs which admit no acyclic 3-

coloring as showed in Fig. 3. In this section

we will show an interesting opposite result.

We found that there are infinite number of

cubic planar graphs which admits acyclic 3-

coloring.

Theorem 3. There is an infinite number of

cubic planar graphs which are acyclically 3-

colorable.

Proof. The graph in Fig. 4(a) is a cubic pla-

nar graph and acyclically 3-colorable. Now

we take any edge and substitute it with a

subgraph according to Fig. 4(b). There is no

bichromatic cycle in the subgraph and any

cycle passing through that subgraph must

visit three colors. The new graph will also

be planar, cubic and acyclically 3-colorable.

In this way we can add this subgraph in any

edges and produce an infinite number of cu-

bic planar acyclically 3-colorable graphs. ⊓⊔

6 Conclusion

In this paper we have shown several results

on the acyclic colorability of complete k-
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partite graphs. We find the minimum chro-

matic number of complete k-partite graphs.

Using subdivision this cromatic number can

be reduced. Actually this reduction process

is a two way optimization porcess. One way

is to reduce the subdivision vertices and

the other way is to reduce the number of

colors. Here we reduce this cromatic num-

ber using subdivision. If G is a complete

k-partite graph having n1, n2, ..., nk vertices

in its P1, P2, ..., Pk partition, respectively.

Then G has a subdivision G′ which is acycli-

cally (2k − 1)-colorable using
∑

i 6=j,i,j≤k

ninj

+nmax+(k−1)−

k−1∑

i=0

(k−i)ni+1 division ver-

tices, where nmax = max(n1, n2, ..., nk). Fi-

nally we show that there is an infinite num-

ber of cubic plananr graphs which are acycli-

cally 3-colorable.
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